Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change

Back to top
Elsevier

Population structure and tree recruitment dynamics in the natural treeline ecotone of high mountains are strong indicators of vegetation responses to climate. Here, we examined recruitment dynamics of Abies spectabilis across the treeline ecotone (3439–3638 m asl) of Chimang Lekh of Annapurna Conservation Area in the Trans-Himalayan zone of central Nepal. Dendrochronological techniques were used to establish stand age structure by ring counts of adults, and by terminal bud scar count for seedlings and saplings. The results showed abundant seedling recruitment, higher regenerative inertia and colonization with a consistent range shift of the A. spectabilis treeline. The upward expansion of this sub-alpine treeline was found to be driven by a strong dependence of seedling recruitment and radial growth on snowmelt and precipitation as temperatures rise. The radial growth of A. spectabilis at the alpine timberline ecotone (ATE) and closed timberline forest (CTF) showed sensitivity to spring season (March–May) climate. Tree ring indices of CTF showed a strong positive correlation with spring and annual precipitation, and a significant negative correlation with spring and annual temperature, however, moisture sensitivity was less strong at ATE than CTF.

https://www.sciencedirect.com/science/article/abs/pii/S1125786516300029

Authors
Achyut Tiwari, Ze-Xin Fan, Alistair S. Jumpe, Shu-Feng Li and Zhe-Kun Zhoua,